Tuesday 24 November 2009

PRC Missile and Space Forces

PRC Missile and Space Forces
page 1

PRC Missile and Space Forces

Since its beginning, the PRC's ballistic missile and space program has received considerable foreign expertise and technology. This support has helped the PRC become a major ballistic missile and space power. The PRC has received considerable assistance from Russia (and previously from the Soviet Union) and the United States, as well as from other nations such as France and Germany.

From 1956 to 1960, the Soviet Union was the major supplier of ballistic missile technology and knowledge to the PRC. The Sino-Soviet split in 1960 ended this cooperation. Today, however, Russia is a major supplier of space launch technology to the PRC. This assistance could be expanded to help the PRC in its efforts to develop road-mobile ICBMs, which would provide the PLA with more confidence in the survivability of its retaliatory nuclear force.

Technology and knowledge acquired from the United States has also assisted the PRC's missile and space programs, although this assistance was never officially sanctioned. Qian Xuesen was a Chinese citizen who was trained in the United States and who worked on classified programs including the Titan ICBM program. After being accused of spying for the PRC in the 1950s, Qian was permitted to return to the PRC, where he became the "father" of the PRC's ballistic missile and space programs. The illegal acquisition of U.S. technology for the PLA's ballistic missiles and space programs has continued aggressively during the past two decades, up to the present day.

The PRC has stolen design information on the United States' most advanced thermonuclear weapons, elements of which could be emulated by the PRC in its next generation ICBMs.

The PRC has stolen U.S. missile guidance technology that has direct applicability to the PLA's ballistic missiles.

Assistance from U.S. companies has improved the reliability of the PRC's military and civilian rockets, and the transfer of some of these improvements to its ballistic missiles is possible.

Western nations, including the United States, Germany, and France, have provided significant support to the PRC's satellite programs. German companies provide the communications package for the PRC's DFH-3 communications satellites. U.S.-manufactured radiation-hardened chips are also used on the PRC's meteorological satellites, used for both military and civilian purposes, to increase the on-orbit life of the satellites.

The PRC is a major ballistic missile proliferator. While the PRC agreed in 1991 to abide by the Missile Technology Control Regime, the PRC transferred complete ballistic missile systems to Pakistan in 1992, and has provided other nations with ballistic missiles production-related technologies. The PRC has not agreed to the MTCR's revised limits on transfers of ballistic missile components.

The PRC has transferred ballistic missile technology to Iran, Pakistan, North Korea, Saudi Arabia, Libya, and other countries.

PRC Missile and Space Forces


"By the next century, as high-tech space technology develops, the deployment of space-based weapons systems will be bound to make 'mastery of space' and 'mastery of outer space' prerequisites for naval victory."

PLA Navy Senior Colonel

Shen Zhongchang

In 1956, advisors from the Soviet Union convinced the leadership of the People's Republic of China (PRC) to include ballistic missile development in the PRC's Twelve Year Plan for the Development of Science and Technology (1956-1967). Having just fought a war against the United States in Korea and having come face-to-face with U.S. military supremacy, the PRC decided that combining long-range ballistic missiles and nuclear weapons offered its best chance to build weapons capable of neutralizing the United States' and the Soviet Union's formidable advantage.

Since that time, the PRC has embarked on an extensive ballistic missile and space program.

From its beginning in the 1950s, the PRC has also adapted its ballistic missile program into a major international space program. Since its first space launch in 1971, the PRC has developed ten variations of rockets that have allowed it to place 44 satellites into orbit.

Today, the PRC is embarked on a modernization plan for its ballistic missile and space forces. This expansion includes the exploitation of space-based military reconnaissance and communications satellites and space-based weapons.1 In addition, the PRC has set for itself the goal of putting men in space this year.

This chapter provides an analysis of the PRC's missile and space forces, and the impact that Western technology has had on those forces. It details the PRC's ballistic missile forces; its space forces, including its rockets and satellites; and the interaction between the two groups.

This chapter also serves as an introduction to the capabilities of the PRC's missile and space programs, and the degree to which foreign assistance and technology may affect the course of their future development.

This chapter is derived from an extensive chapter in the Select Committee's classified Report, much of which, due to national security concerns, cannot be reproduced here.

The PLA's Ballistic Missile Forces

Development of the PLA's Ballistic Missile Forces

The early development of the PLA's indigenous ballistic missile programs was marked by Soviet assistance, and by the guidance of a Chinese citizen who had returned to the PRC after working on the U.S. Titan intercontinental ballistic missile (ICBM) program.2

The Soviet Union's Contribution to the PLA's Ballistic Missile Force

The PRC received its first ballistic missiles in 1956, with the acquisition of two Soviet R-1 missiles. These were copies of the German cryogenic liquid-propellant V-2 missiles used in World War II. The PRC quickly acquired more advanced missiles in the form of the R-2 in 1957. The R-2 had considerable technical improvements over the R-1, including a greater range and a larger payload, as well as the use of storable liquid propellants.

In addition to the ballistic missiles themselves, the Soviet Union provided the PRC with blueprints for the R-2 missiles, and with advisors to assist in the PRC's development of a copy of the R-2. With this Soviet technical assistance, the PRC was able to produce and deploy these missiles.

During this period, PRC engineers and students received training at the Moscow Aviation Institute (MAI). While at MAI, these students were trained in aeronautical engineering, and acquired experience with more advanced Soviet missiles such as the SS-3 and the SS-4. In many instances, the information gained about more advanced Soviet missiles came when the students made copies of restricted notes, and quizzed their professors about the Soviet missiles.

In 1960, the Sino-Soviet split ended all cooperation, including missile cooperation, between the PRC and the Soviet Union. This left the PRC to continue its missile programs on its own, using the know-how it had gained from the Soviet Union, and the expertise of its American-trained scientists.

The Role of Qian Xuesen in the Development Of the PRC's Ballistic Missile and Space Programs

The PRC's ballistic missile and space programs received substantial assistance during their early development from Qian Xuesen (also known as Tsien Hsue-Shen), a Chinese citizen who was trained in the United States and had worked on classified U.S. missile programs, including the Titan intercontinental ballistic missile program.

Qian Xuesen became instrumental in the PRC's ballistic missiles program, where he is known as the "father of China's ballistic missile force." A biography of Qian published in the PRC states that he "made significant contributions to the rapid development of Chinese rockets [and] missiles, as well as space flight." 3

Born in Shanghai in 1911, Qian left China in 1935 during the Japanese occupation. He received his Masters degree from the Massachusetts Institute of Technology (MIT) and his Ph.D. from the California Institute of Technology (Cal Tech). At Cal Tech, Qian worked as a member of the rocket research group of the Guggenheim Aeronautical Laboratory, and at the Jet Propulsion Laboratory (JPL).

While at the Guggenheim Aeronautical Laboratory he made "pioneering contributions" to aviation engineering theory in the areas of supersonic and transonic aerodynamics, as well as thin shell stability theory for ballistic missile structures.4

At JPL, Qian was recognized as one of the world's foremost experts on jet propulsion. During this time, he worked on Private A, which was the first solid propellant missile that performed successfully in the United States.5

Based on his rocket work at Cal Tech, Qian was recruited to join the U.S. Army Air Force in the development of its long-range missile programs.6 Commissioned a Colonel in the U.S. Army Air Force,7 he eventually began working on the Titan intercontinental ballistic missile.8

During the 1950s, allegations arose that Qian was spying for the PRC. 9 He lost his security clearances and was removed from work on U.S. ballistic missiles. 10 The allegations that he was spying for the PRC are presumed to be true.

Qian was invited back to the PRC and, after negotiations between the U.S. Government and the PRC, Qian was allowed to return to the PRC in 1955. Four other Chinese members of Qian's Titan design team also returned with him to the PRC.11 There were additional allegations that Qian attempted to ship classified documents to the PRC before he left in 1955.12

Once back in the PRC, Qian became the leading figure in the PRC's ballistic missile effort.13 Qian and his associates were able to apply the knowledge they gained from working on U.S. ballistic missile programs to the PRC's ballistic missile programs.

Qian became the chief project manager in all of the PRC's ballistic missile programs, and was the lead designer of the CSS-4 intercontinental ballistic missile. The CSS-4 is the nuclear-armed ICBM currently targeted on the United States. (All but two of the PRC's approximately 20 CSS-4 ICBMs have been deployed during the 1990s.)

Qian was also the first director of the PRC's Fifth Academy, which was responsible for aeronautics and missile development research.14 Today, the Fifth Academy is known as the China Aerospace Corporation (CASC), and its current Director is PRC Minister Liu Jiyuan.15

Qian was also instrumental in the development of the PRC's space program. In 1958, he began presenting his concepts for a satellite to the Communist Party leadership. In 1962, Qian began training PRC scientists in the design and development of satellites. The satellite, which would become known as the Dong Fang Hong-1, was launched on April 24, 1970. Qian was personally commended by Mao Zedong and other PRC leaders for his contributions to the design and launch of the satellite.16

The CCP leadership awarded Qian the honorary rank of Lieutenant General in the People's Liberation Army. It is a rank commensurate with his place as a senior scientist in the PRC's ballistic missile program.17

In 1991, President Jiang Zemin provided Qian with the "State Scientist of Outstanding Contribution" award, which is the highest honor a scientist in the PRC can achieve.18

Development of the PLA's Intermediate- and Short-Range Ballistic Missiles

The PRC began developing three ballistic missiles in the early 1960s. The first two, which would become known in the West as the CSS-2 and CSS-3, showed strong Soviet design influences, especially in the guidance and propulsion subsystems. The third missile, which would become known as the CSS-4, uses advanced gyroscopes for increased accuracy. The chart on the previous page illustrates current and future PRC ballistic missile systems.

The CSS-2 mobile missile is designated by the PLA as the Deng Feng 3 (that is, East Wind 3). It has evolved into a 1,700- to 1,900-mile range single-stage liquid-propellant ballistic missile. The PLA deploys CSS-2 ballistic missiles on mobile launchers. The PRC sold several dozen of these CSS-2 missiles, armed with conventional warheads, to Saudi Arabia in 1988.

The CSS-3 (PLA designation DF-4, or East Wind 4) was the PRC's first missile with "intercontinental" range. The CSS-3 is a two-stage liquid-propellant intercontinental ballistic missile. It has a range of more than 3,400 miles,19 but is considered a "limited range" ICBM because it cannot reach the United States. It uses the medium-range CSS-2 as its first stage. Targets for the PLA's CSS-3 missiles could include:

* India
* Russia
* The U.S. Naval Facility at Diego Garcia
* The U.S. Air Force Base at Guam

The CSS-3 missiles are based in silos, and in mountainside tunnels where they are rolled out and erected for launch.20 The CSS-3 missile has been deployed by the PLA since 1980.21

The PLA's Current "East Wind" Intercontinental Ballistic Missiles

The CSS-4 (PLA designation DF-5, or East Wind 5) is currently the PRC's main ICBM nuclear threat against the United States.

The CSS-4 program began in the 1960s. It was originally envisioned that the missile would use liquid oxygen and kerosene propellants, similar to those used in the Soviet R-7 (SS-6) missile and in the U.S. Atlas. In the early 1960s, however, the program transitioned into the use of storable propellant.

Progress in the CSS-4 program was slowed by the Great Leap Forward in 1963 and the Cultural Revolution from 1966-1976, which compounded the technical challenges of developing an ICBM. The CSS-4's development program continued to progress over the next 20 years.

No comments:

Post a Comment